
Solution to Exercise 61

1. (a) xu = (2u, 2v, 2u), xv = (−2v, 2u, 2v).

Hence, xu × xv =

∣∣∣∣∣∣
ı̂ ȷ̂ k̂
2u 2v 2u
−2v 2u 2v

∣∣∣∣∣∣ = (4(v2 − u2),−8uv, 4(u2 + v2)).

∥xu × xv∥ =
√

4(v2 − u2)2 + (−8uv)2 + [4(u2 + v2)]2 = 4
√
2(u2 + v2).

Therefore, n̂ =
xu × xv

∥xu × xv∥
=

(4(v2 − u2),−8uv, 4(u2 + v2))

4
√
2(u2 + v2)

=
1√
2
(
v2 − u2

u2 + v2
,− 2uv

u2 + v2
, 1).

Note that differentiating xu and xv are much easier, we may find xuu, xuv and xvv.
xuu = (2, 0, 2), xuv = (0, 2, 0), xvv = (−2, 0, 2).

Next, e = ⟨xuu, n̂⟩ =
2
√
2v2

u2 + v2
, f = ⟨xuv, n̂⟩ = − 2

√
2uv

u2 + v2
, g = ⟨xvv, n̂⟩ =

2
√
2u2

u2 + v2
.

Therefore II =
(
e f
f g

)
=

2
√
2

u2 + v2

(
v2 −uv
−uv u2

)
.

(b) xu = (1, 0, v), xv = (0, 1, u).

Hence, xu × xv =

∣∣∣∣∣∣
ı̂ ȷ̂ k̂
1 0 v
0 1 u

∣∣∣∣∣∣ = (−v,−u, 1).

∥xu × xv∥ =
√
(−v)2 + (−u)2 + 12 =

√
u2 + v2 + 1.

Therefore, n̂ =
xu × xv

∥xu × xv∥
=

(−v,−u, 1)√
u2 + v2 + 1

.

Note that differentiating xu and xv are much easier, we may find xuu, xuv and xvv.
xuu = (0, 0, 0), xuv = (0, 0, 1), xvv = (0, 0, 0).
Next, e = ⟨xuu, n̂⟩ = 0, f = ⟨xuv, n̂⟩ = − u√

u2 + v2 + 1
, g = ⟨xvv, n̂⟩ = 0.

Therefore II =
(
e f
f g

)
= − u√

u2 + v2 + 1

(
0 1
1 0

)
.

(c) xu = (3u2 cos v, 3u2 sin v, 1), xv = (−u3 sin v, u3 cos v, 0).

Hence, xu × xv =

∣∣∣∣∣∣
ı̂ ȷ̂ k̂

3u2 cos v 3u2 sin v 1
−u3 sin v u3 cos v 0

∣∣∣∣∣∣ = (−u3 cos v,−u3 sin v, 3u5).

∥xu × xv∥ =
√

(−u3 cos v)2 + (−u3 sin v)2 + (3u5)2 = u3
√
9u4 + 1 as u > 0.

Therefore, n̂ =
xu × xv

∥xu × xv∥
=

(− cos v,− sin v, 3u2)√
9u4 + 1

.

Since differentiating xu and xv are relatively easier, we may find xuu, xuv and xvv.
xuu = (6u cos v, 6u sin v, 0), xuv = (−3u2 sin v, 3u2 cos v, 0), xvv = (−u3 cos v,−u3 sin v, 0).

Next, e = ⟨xuu, n̂⟩ = − 6u√
9u4 + 1

, f = ⟨xuv, n̂⟩ = 0, g = ⟨xvv, n̂⟩ =
u3

√
9u4 + 1

.

Therefore II =
(
e f
f g

)
=

u√
9u4 + 1

(
−6 0
0 u2

)
.

1If you have any questions or spot any mistakes, find feel free to contact Michael Cheung through michaelche-
ung0723@gmail.com for Questions 1 to 3, and Max Shung through maxshung.math@gmail.com for Questions
4 to 5.
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2. (a) Since F = 0, by considering Theorem 3.3.11 in lecture notes, we have

K = − 1

2
√
EG

[(
Ev√
EG

)v + (
Gu√
EG

)u] = − 1

2f 2
[(
2ffv
f 2

)v + (
2ffu
f 2

)u]

= − 1

f 2
[(
fu
f
)u + (

fv
f
)v] = − 1

f 2
[(ln f)uu + (ln f)vv] = − 1

f 2
(
∂2

∂u2
+

∂2

∂v2
) ln f

(b) Note that
1√

u2 + v2 + 1
> 0.

K = −(u2 + v2 + 1)(
∂2

∂u2
+

∂2

∂v2
) ln(

1√
u2 + v2 + 1

)

=
u2 + v2 + 1

2
[
−2u2 + 2v2 + 2

(u2 + v2 + 1)2
+

2u2 − 2v2 + 2

(u2 + v2 + 1)2
] =

2

u2 + v2 + 1

(c) Note that e−u > 0.

K = −eu
2

(
∂2

∂u2
+

∂2

∂v2
) ln(e−

u2

2 ) = −eu
2

(
∂2

∂u2
+

∂2

∂v2
)(−u2

2
) = eu

2

3. (a) xu = (cos v, sin v, 0), xv = (−u sin v, u cos v, 1).

Hence, xu × xv =

∣∣∣∣∣∣
ı̂ ȷ̂ k̂

cos v sin v 0
−u sin v u cos v 1

∣∣∣∣∣∣ = (sin v,− cos v, u).

∥xu × xv∥ =
√
(sin v)2 + (− cos v)2 + u2 =

√
u2 + 1.

Therefore, n̂ =
xu × xv

∥xu × xv∥
=

(sin v,− cos v, u)√
u2 + 1

.

(b) Since ⟨xu,xv⟩ = 0, x(u, v) is an orthogonal parametrization.
(c) Note that E = ⟨xu,xu⟩ = 1, F = 0, G = ⟨xu,xu⟩ = u2 + 1.

Also, xuu = (0, 0, 0), xuv = (− sin v, cos v, 0), xvv = (−u cos v,−u sin v, 0).
Hence, e = ⟨xuu, n̂⟩ = 0, f = ⟨xuv, n̂⟩ = − 1√

u2 + 1
, g = ⟨xvv, n̂⟩ = 0. As a

result, K =
det II
det I

=
eg − f 2

EG− F 2
=

− 1

u2 + 1
u2 + 1

= − 1

(u2 + 1)2
.
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4. (a) S is a minimal surface if the mean curvature H = 0 at every points of S.
(b) We see that the mean curvatures of Helicoid and Catenoid are both zero, at every-

where. Thus, Helicoid and Catenoid are minimal surfaces.
(c) i. Parametrize the surface Φ by

X(θ, z) = (f(z) cos θ, f(z) sin θ, z), for (θ, z) ∈ (0, 2π)× R
Then, we have {

Xθ = (−f(z) sin θ, f(z) cos θ, 0)
Xz = (f ′(z) cos θ, f ′(z) sin θ, 1)

The first fundamental form of the surface is given by

I =

(
(f(z))2 0

0 (f ′(z))2 + 1

)
Consider the unit normal vector

n =
Xθ ×Xz

∥Xθ ×Xz∥
=

1

f(z)
√
1 + (f ′(z))2

(f(z) cos θ, f(z) sin θ,−f(z)f ′(z))

= ± 1√
1 + (f ′(z))2

(cos θ, sin θ,−f ′(z))

Also, we have 
Xθθ = (−f(z) cos θ,−f(z) sin θ, 0)
Xθz = (−f ′(z) sin θ, f ′(z) cos θ, 0) = Xzθ

Xzz = (f ′′(z) cos θ, f ′′(z) sin θ, 0)

With respect to the normal vector n, the second fundamental form is given by

II = ± 1√
1 + (f ′(z))2

(
−f(z) 0

0 f ′′(z)

)
Therefore, the Gaussian curvature of the surface Φ is given by

KΦ(z) =
det(II)

det(I)
=

−f(z)f ′′(z)/
(
1 + (f ′(z))2

)
(f(z))2

(
1 + (f ′(z))2

) = − f ′′(z)

f(z)
(
1 + (f ′(z))2

)2
Also, the mean curvature of the surface Φ is

HΦ(z) =
1

2
· 1√

1 + (f ′(z))2

(
f ′′(z)(f(z))2 − 0 +

(
1 + (f ′(z))2

)
(−f(z))

(f(z))2
(
1 + (f ′(z))2

) )

= ± 1

2(f(z))2
(
1 + (f ′(z))2

) 3
2

(
f(z)

[
f(z)f ′′(z)− 1− (f ′(z))

2
])

= ±1 + (f ′(z))2 − f(z)f ′′(z)

2f(z)
(
1 + (f ′(z))2

) 3
2
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Remark. The original problem set omitted the ” ± ” sign. The mean curvature
depends on which unit normal vector you pick.

ii. Define

f(z) = a
(
cosh

z

a
cosh b+ sinh

z

a
sinh b

)
= a cosh

(z
a
+ b
)

Note that

f ′(z) = sinh
(z
a
+ b
)

and f ′′(z) =
1

a
cosh

(z
a
+ b
)

Then, we have

1 + (f ′(z))
2 − f(z)f ′′(z) = 1 + sinh2

(z
a
+ b
)
− a · 1

a
cosh2

(z
a
+ b
)

= cosh2
(z
a
+ b
)
− cosh2

(z
a
+ b
)

= 0

with a > 0 and b ∈ R. Also, we have f(z) > 0 and 1 + (f ′(z))2 > 0, hence by
using part (c)i., the mean curvature of the surface obtained by rotating the graph
of x = f(z) is

H =
1 + (f ′(z))2 − f(z)f ′′(z)

2f(z)
(
1 + (f ′(z))2

) 3
2

≡ 0

everywhere. Thus, using part (a), the surface is a minimal surface.
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5. (a) Note that{
⟨xu,nu⟩ = a11 ⟨xu,xu⟩+ a12 ⟨xu,xv⟩
⟨xu,nv⟩ = a21 ⟨xu,xu⟩+ a22 ⟨xu,xv⟩

=

(
a11 a12
a21 a22

)(
⟨xu,xu⟩
⟨xu,xv⟩

)
Also, we have{

⟨xv,nu⟩ = a11 ⟨xv,xu⟩+ a12 ⟨xv,xv⟩
⟨xv,nv⟩ = a21 ⟨xv,xu⟩+ a22 ⟨xv,xv⟩

=

(
a11 a12
a21 a22

)(
⟨xv,xu⟩
⟨xv,xv⟩

)
Therefore, it follows that(

⟨xu,nu⟩ ⟨xu,nv⟩
⟨xv,nu⟩ ⟨xv,nv⟩

)
=

(
a11 a12
a21 a22

)(
⟨xu,xu⟩ ⟨xu,xv⟩
⟨xv,xu⟩ ⟨xv,xv⟩

)
−(II) =

(
a11 a12
a21 a22

)
I

Therefore, we have (
a11 a12
a21 a22

)
= −(II)(I)−1

(b) The differential of the Gauss map is defined by{
dnp (xu) = nu

dnp (xv) = nv

and its matrix representation is given by

dnp =

(
a11 a12
a21 a22

)
As the shape operator of X is the negative differential of the Gauss map, the matrix
representation is defined as follows:

−dnp = −
(

a11 a12
a21 a22

)
Thus, from part (a), we have

S = −dnp = (II)(I)−1

(c) Note that

K =
det(II)

det(I)
= det

(
(II)(I)−1

)
= det(S)

and

5



H =
1

2

(
gE − 2fF + eG

EG− F 2

)
=

1

2
tr

[(
e f
f g

)
· 1

EG− F 2

(
G −F
−F E

)]
=

1

2
tr
(
(II)(I)−1

)
=

1

2
tr(S)

(d) By direct computation, we have

A2− tr(A)A+ det(A)I =

(
a b
b c

)2

− (a+ c)

(
a b
b c

)
+
(
ac− b2

)( 1 0
0 1

)
=

(
a2 + b2 ab+ bc
ab+ bc b2 + c2

)
−
(

a2 + ac ab+ bc
ab+ bc ac+ c2

)
+

(
ac− b2 0

0 ac− b2

)
=

(
0 0
0 0

)
= 0

Remark. See Cayley Hamilton’s Theorem.
Hence, from (*) and part (c), we have

S2 − 2HS +KI = S2 − 2

(
1

2
tr(S)

)
S + det(S)I (from part (c))

= S2 − tr(S)S + det(S)I

= 0 (from(*))

(e) i. K(p) = det(S) = (−2)2 − 1 = 3,

H(p) =
1

2
tr(S) =

1

2
(−2− 2) = −2

ii. Consider

det(S − κI) = 0

κ2 − 2(−2)κ+ 3 = 0

(κ+ 1)(κ+ 3) = 0

κ = −1 or κ = −3

Thus, the principal curvatures of X at p are κ1 = −3 and κ2 = −1.
iii. When κ = κ1 = −3, then we have

(S + 3I)ξ1 = 0(
1 1
1 1

)
ξ1 =

(
0

0

)
By solving the simultaneous equations, we have
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ξ1 =

{
s

(
1

−1

)
: s ∈ R\{0}

}
Thus, ξ1 = (1,−1) is the principal direction associated with the principal cur-
vature is κ1 = −3.
- When κ = κ2 = −1, then we have

(S + I)ξ2 = 0(
−1 1
1 −1

)
ξ2 =

(
0

0

)
By solving the system again, it follows that

ξ2 ∈
{
t

(
1

1

)
: t ∈ R\{0}

}
This implies that ξ2 = (1, 1) is the principal direction associated with the prin-
cipal curvature is κ1 = −1.

iv. From part (e) iii., we have

⟨ξ1, ξ2⟩ = 1(−1) + 1(1) = 0

Hence, two principal directions are orthogonal.
For any unit vector v ∈ Tp(X(u, v)), the normal curvature of the surface at p
along v is defined by

κn(v) = −⟨v, dnp(v)⟩

As Tp(X) = span {Xu,Xv} = span {ξ1, ξ2} and ⟨ξ1, ξ2⟩ = 0, we write

v =
1√

a2 ∥ξ1∥
2 + b2 ∥ξ2∥

2
(aξ1 + bξ2)

since v is a unit vector.
Then, we have

κn(v) = − 1(√
a2 ∥ξ1∥

2 + b2 ∥ξ2∥
2

)2 ⟨aξ1 + bξ2, dnp (aξ1 + bξ2)⟩

=
1

a2 ∥ξ1∥
2 + b2 ∥ξ2∥

2 ⟨aξ1 + bξ2, aκ1ξ1 + bκ2ξ2⟩

=
a2 ∥ξ1∥

2

a2 ∥ξ1∥
2 + b2 ∥ξ2∥

2κ1 +
b2 ∥ξ2∥

2

a2 ∥ξ1∥
2 + b2 ∥ξ2∥

2κ2

Also, from our assumption, we have κ1 ≤ κ2, thus it follows that

κn(v) ≤
a2 ∥ξ1∥

2

a2 ∥ξ1∥
2 + b2 ∥ξ2∥

2κ2 +
b2 ∥ξ2∥

2

a2 ∥ξ1∥
2 + b2 ∥ξ2∥

2κ2 = κ2

and
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κn(v) ≥
a2 ∥ξ1∥

2

a2 ∥ξ1∥
2 + b2 ∥ξ2∥

2κ1 +
b2 ∥ξ2∥

2

a2 ∥ξ1∥
2 + b2 ∥ξ2∥

2κ1 = κ1

Thus, we have

−3 = κ1 ≤ κn(v) ≤ κ2 = −1.
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