Solution to Exercise 6

. (a) x, = (2u,2v,2u), x, = (—2v, 2u, 2v).

i Kk
Hence, x, X x, = | 2u 2v 2u | = (4(v* — u?), —8uw, 4(u® + v?)).
—2v 2u 2v
o X x| = /A — B+ (Bt (@ T 00 = 4V + 07).
Therefore, fi — X% _ (4(v* — u?), —8uv, 4(u* + v?)) _ L(vz —u? 7_ 2uv ).
%y X X 48/2(u? + v?) V2 ut 02w+ o2

Note that differentiating x,, and x,, are much easier, we may find x,,,, X, and x,,.
Xuu = (2,0,2), x4 = (0,2,0), x,, = (—2,0,2).
L 2/ 202 2/ 2uw _ 2v/2u?

Next, e = <qu,n> - u2 —{—’UQ’ f = <Xuvaﬁ> = _U2 T 02’ = <vaaﬁ> - u2 —|—’U2.
24/2 2
Therefore 11 = | © / = —\/_ Y z;v .
f g w2+ 02 \—uv  u
(b) x, = (1,0,v), x, = (0,1, u).
1 )] k
Hence,x, xx, =|1 0 v |=(—v,—u,1)
01 uw
I > x| = /(=0)? + (—u)? + 12 = VuZ + 02 + 1.
U v - U, a]-
Therefore, n = Xu XXy _ (Zv, —u )
qu XXUH u?+v2+1

Note that differentiating x,, and x,, are much easier, we may find X, X, and X,,.
Xuu = (0,0,0), x4, = (0,0,1), x,, = (0,0,0).
Next, e = (X, D) =0, f = (Xyp, M) = ——————, g = (X, N) = 0.

(0 B) = 0, f = ) = ==t g = ()

e f u 0 1
Therefore II = = .
(f ) Vu? +v2 41 (1 0)

(¢) x, = (3u?cosv,3u*sinv, 1), x, = (—u?sin v, u® cos v, 0).
i ik
Hence, x, X x, = | 3u?cosv 3u’sinv 1 | = (—u?cosv, —u?sinv, 3u®).

—udsinv wlcosv 0

x4 X X, = \/(—ud cosv)? + (—ud sinv)? + (3u’)? = udv/9u? + 1L asu > 0.

. X, X Xy (— cosv, —sin v, 3u?)
Therefore, n = =
e x| Vou +1
Since differentiating x,, and x, are relatively easier, we may find x,,,,, X, and x,,.

Xuu = (6ucosv, 6usinv,0), Xy, = (—3u?sinv, 3u® cosv,0), X, = (—u® cosv, —u?sin v, 0).

. 6 R R 3
Next, e = <quan> = = f= <Xuvvn> =0,9= <va’n> -

Vo1 Vo1
e f u —6 0
Therefore II = = — .
(f ) 9ut + 1 < 0 uQ)

'If you have any questions or spot any mistakes, find feel free to contact Michael Cheung through michaelche-
ung0723 @gmail.com for Questions 1 to 3, and Max Shung through maxshung.math @gmail.com for Questions
4t05.




2. (a) Since I’ = 0, by considering Theorem 3.3.11 in lecture notes, we have

1B Gu o 1 2ffe  2ff
K= vme Ve T U = O
Lo fu Jo 1 1,0  0?
= _F[(T)u + (7%] = —F[(lnf)uu + (I f)ew] = —F(w + w)lnf
(b) Note that; > 0.
u? +v2+1
0? 0? 1
— (2 2 - 4 = - -
K=—-u+v +1)(8u2+8v2)m( u2+v2+1)
_u2+112+1—2u2+2v2—|—2+2u2—2v2+2]_ 2
B 2 (w2 +v2+1)2  (u24+02+1)2 w2 +o2+1
(c) Note thate™ > 0.
w2 0? 0? _u? w2 0? 0? u? 2
K=" g tpp)nle 7 ="t pp)-5) =¢

3. (a) x, = (cosv,sinw,0), x, = (—usinv,ucosv, 1).
i j k
Hence, x, X X, = | cosv sinv 0 | = (sinv, —cosv,u).
—usinv wucosv 1
%4 X X, = /(sinv)2 + (—cosv)2 + u® = Vu + 1.
Xy XX,  (sinv, —cosv,u)
|30 X x| u? +1 .
(b) Since (x,,X,) = 0, x(u, v) is an orthogonal parametrization.
(c) Note that F = (x,,X,) = 1, F =0, G = (x,,%x,) = u® + 1.
Also, x,,, = (0,0,0), X, = (—sin v, cos v,0), Xy, = (—ucosv, —usinv,0).

1
_\/u2 +1

det II  eg— f? T2+ 1 1
It, K = - - _— .
rest det1  EG_F?  w2+1 (w? + 1)?

Therefore, n =

Hence, ¢ = (xyy,0) = 0, f = (Xyp, ) = , g = (Xp,0) = 0. Asa




4.

(a) S is a minimal surface if the mean curvature H = 0 at every points of S.

(b) We see that the mean curvatures of Helicoid and Catenoid are both zero, at every-
where. Thus, Helicoid and Catenoid are minimal surfaces.

(c) i. Parametrize the surface ¢ by

X(0,2) = (f(z)cosb, f(z)sinb, z), for (0, 2) € (0,27) x R

Then, we have

{ Xg = (—f(2)sinb, f(z) cos0,0)
X, = (f'(z)cosb, f'(z)sinb, 1)

The first fundamental form of the surface is given by

= ( I raper )

Consider the unit normal vector

Xy x X, 1 :
n = = (f(2)cosd, f(2)sind, —f(2) f'(2))
IXox X gy 1+ (7(2))?
= i; (cosf,sinf, —f'(2))
L+ (f'(2)?

Also, we have

Xog = (—f(2) cosO, —f(z)sin,0)
Xy, = (—f'(2)sinb, f'(2) cos6,0) = X,g
X.. = (f"(2) cosb, f"(z)sin6,0)
With respect to the normal vector n, the second fundamental form is given by

1 —f(z) 0
M=t .
L+ (f'(2))’ < A >

Therefore, the Gaussian curvature of the surface ® is given by

_det@) _ —f) (L (FR)) £(2)
det(T) ()2 (1+ (F(2)) F(2) (1+ (f(2))%)°

Also, the mean curvature of the surface ® is

Kq;.(Z)

o (P
L+ (f'(2))°




ii.

Remark. The original problem set omitted the ” £ ” sign. The mean curvature
depends on which unit normal vector you pick.

Define

z RN z
f(z)=a (COSh ; cosh b + sinh . sinh b) = acosh (a + b)

Note that

f'(z) = sinh (2 + b) and f"(z) = %COSh (2 + b)

Then, we have

/ 2 " _ c 12 E . 1 2 E
L+ (f'(2)" = f(2)f"(2) =1+ sinh (a—i-b) a aCOSh <a+b>
— cosh? (2 —cosh? (2
= cosh (a+b> cosh (a—i-b)
=0
with @ > 0 and b € R. Also, we have f(z) > 0 and 1 + (f'(2))* > 0, hence by

using part (c)i., the mean curvature of the surface obtained by rotating the graph
of x = f(z)is

g L) - ()

2(2) (1+ (F1(2))°)?

everywhere. Thus, using part (a), the surface is a minimal surface.

0




5.

(a) Note that
<Xu7 nu> = ai <Xu7xu> + aqo <Xu;Xu> _ @11 Q12 <XUJXU>
<XU7 nv> = as1 <Xuy Xu> + ag9 <Xu; XU>
Also, we have
(Xy, Ny) = A11 (Xy, Xy) + Q12 (Xy, Xy) _( an a2 (Xy, Xy)
<Xv7 nv> = as1 <Xv7 Xu> + a9 <Xv7 Xv>
Therefore, it follows that

(X my)  (x,my) ) _
( )

(Xy, 1) (Xy,0y)

Therefore, we have

(o)~ —anm

Q21 A2

(b) The differential of the Gauss map is defined by

{ dn, (x,) = n,

dn, (x,) = n,
and its matrix representation is given by
a;n a
dnp — 11 12
a1 Q22
As the shape operator of X is the negative differential of the Gauss map, the matrix
representation is defined as follows:

—dnp:—(an a2 )
Q21  A22
Thus, from part (a), we have
S = —dn, = (II)(I)’1
(c) Note that

_ det(II)

K = det () = det ((IT)(I)~") = det(S)

and



o gE —2fF + eG
N EG — F?2

1
2

3o |(5 o) w5 8]
2 [ g EG-F2\ —-F FE
1

= —tr (AI)(I)7) = %tr(S)

[\

(d) By direct computation, we have

A2 tr(A)A + det(A)] = (Z i)z—(a—i—c) <Z i>+(ac_b2) <

[ @+ ab+bc\ [ a®+ac ab+be N ac — b?
“\ab+be b+ ab+be  ac+ 2

00
“(00)-0

Remark. See Cayley Hamilton’s Theorem.
Hence, from (*) and part (c), we have

S? —2HS + KI = S* -2 (% tr(S)) S +det(S)I  (from part (c))

= 5% — tr(S5)S + det(9)I
=0 (from(*))

© i K(p)=det(S)=(-2)>—1=3,

ii. Consider
det(S —kl) =0
K —2(=2)k+3=0
(k+1)(k+3)=0

k=—-1 orkx=-3
Thus, the principal curvatures of X at p are Ky = —3 and Ky = —1.
iii. When k = k; = —3, then we have

(1 1)a=()

By solving the simultaneous equations, we have



= (3) vem)

Thus, &, = (1, —1) is the principal direction associated with the principal cur-
vature is k1 = —3.
- When k = k9 = —1, then we have

(S+1)¢,=0

(7 4)e-()

By solving the system again, it follows that

¢, c {tG) e R\{O}}

This implies that £ = (1, 1) is the principal direction associated with the prin-
cipal curvature is k; = —1.

iv. From part (e) iii., we have

(€1,&) = L(=1)+1(1) =0

Hence, two principal directions are orthogonal.
For any unit vector v € T,,(X(u, v)), the normal curvature of the surface at p
along v is defined by

K (V) = — (v, dnp(v))
As T,(X) = span {X,,, X, } = span{§;, &, } and (&, &,) = 0, we write

v= ! (a, +bE,)

Ve & + 8 [16)?

since v is a unit vector.
Then, we have

1

(Ve e + v el

Kn(V) = — (a&; + b€y, dny (a; + bE,))

1
= (a&y + b€y, ar & + bra&,)
a|lg) "+ )&, T T ’
a2 &, b &,

= R1 R2
a? [[& | + 02 || &I a? [|& |” + 6 || &I

Also, from our assumption, we have k1 < ko, thus it follows that

2 2 2 2

a b

P 1 |-
a2 ||&,|)° + b2 [|&,| a2 ||€ ]I + 02 ||&, ||

and



a’? ||€1||2 b? ||£2||2

Kn(V) > K1+ =K

1 R1 =
a? 1€, + 0% ||& I a® 1€ )1 + b? 1€,

Thus, we have

—3 =K1 < Kp(Vv) < kg =—1.



